Graduation Year

2016

Date of Thesis Acceptance

Spring 5-11-2016

Major Department or Program

Mathematics

Advisor(s)

Albert Schueller

Abstract

In this paper, we discuss important properties of the Centroidal Voronoi Tessellation, and the geometry of CVTs on ellipses. We discuss some definitions, algorithms, and applications for CVTs. We then proceed to prove the main result of this paper: that the only CVTs of ellipses with two generators are those where the boundary between the two Voronoi regions is a line of symmetry of the ellipse. We also generalize this result to a similar class of shapes---particularly, convex shapes with rotational symmetry of order 2 whose boundaries mirrored across any line through their point of rotation intersect the original boundary in exactly four locations. To achieve both of these proofs, we first prove an important theorem which states that the Voronoi boundary of CVTs with two generators on convex shapes with order 2 rotational symmetry must intersect the origin.

Page Count

46

Subject Headings

Voronoi-Diagramm, Ellipses, Shapes -- Mathematical models, Tessellations (Mathematics) -- Centroidal voronoi tessellations, Discrete geometry, Whitman College 2016 – Dissertation collection – Mathematics Department

Permanent URL

http://hdl.handle.net/10349/201608091264

Document Type

Public Accessible Thesis

Terms of Use

If you have questions about permitted uses of this content, please contact the ARMINDA administrator

Available for download on Wednesday, May 09, 2018

Included in

Mathematics Commons

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).