Graduation Year

2010

Date of Thesis Acceptance

Fall 5-12-2010

Major Department or Program

Mathematics

Advisor(s)

Douglas Hundley

Abstract

Singular Value Decomposition (SVD) and similar methods can be used to factor matrices into subspaces which describe their behavior. In this paper we review the SVD and generalized singular value decomposition (GSVD) and some of their applications. We give particular attention to how these tools can be used to isolate important patterns in a dataset and provide predictions of future behavior of thes patterns. A major focus of this project is the examination of a component resampling method described by Michael Dettinger which provides estimates of probability distributions for small sets of data [2]. We tested the results of using both the SVD and the GSVD for Dettinger's method. Similarly to Dettinger, we found that the method had a tendency to give probability distributions a Gaussian shape even when this did not seem to be represented in the original data. For some data sets, however, both using the SVD and GSVD provided what appear to be reasonable probability distributions. There was not a significant difference in how well original probability distributions were estimated when using Dettinger's original method or the modifications with the reduced SVD or the GSVD. Using Dettinger's method rather than a simple histogram always provided a higher resolution of information, and was some- times capable of matching the shape of the original probability distributions more closely.

Page Count

83

Subject Headings

Linear algebras, Probabilities -- Mathematical models, Whitman College 2010 -- Dissertation collection -- Mathematics Department

Permanent URL

http://hdl.handle.net/10349/886

Document Type

Public Accessible Thesis

Terms of Use

If you have questions about permitted uses of this content, please contact the ARMINDA administrator

Included in

Mathematics Commons

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).