Author(s)

Paul A. DaRosa

Graduation Year

2010

Date of Thesis Acceptance

Fall 5-10-2010

Major Department or Program

Chemistry

Advisor(s)

Tim Machonkin

Abstract

Chlorinated xenobiotic compounds such as pentachlorophenol are destructive to the environment and are toxic to most organisms. The removal of these chemicals is difficult due to their intrinsic properties. The stability and limited biodegradability of chlorinated aromatic compounds make these chemicals particularly challenging targets for bioremediation. Degradation pathways of chlorinated arenes tend to be inefficient due to dead end metabolites and bottlenecks. To increase the rate of biodegradation and remove bottlenecks, creation of hybrid strains through patchwork assembly, pathway engineering, or protein engineering may be necessary. This can only be achieved if the enzymes in these pathways are well characterized. In this study, site-directed mutagenesis was performed on Sphingobium chlorophenolicum 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA). PcpA is a nonheme Fe(II)-containing enzyme that oxidatively cleaves 2,6-dichlorohydroquinone in the degradation pathway of pentachlorophenol and has potential applications in bioremediation. The second coordination sphere residues, H49 and R259, were mutated to various amino acids to study the role of these residues in the enzymes’ structure and catalysis. R259 is proposed to have an important structural role in pcpA, while H49 is proposed to have an acid/base role in the oxidative ring cleavage of 2,6-dichlorohydroquinone by PcpA. The information obtained from these mutations offers a starting point for further studies of substrate specificity and the catalytic mechanism of PcpA. This information may be critical to PcpA’s possible bioremediation applications.

Page Count

65

Subject Headings

Xenobiotics -- Structure-activity relationships, Hydroquinone -- 2‚6-Dichlorohydroquinone 1‚2-dioxygenase (PcpA), Enzymes, DNA, Polymerase chain reaction, Mutations, Mutagenesis, Pentachlorophenol, Xenobiotics, Whitman College 2010 -- Dissertation collection -- Chemistry Department

Permanent URL

http://hdl.handle.net/10349/890

Document Type

Whitman Community Accessible Thesis

Terms of Use

If you have questions about permitted uses of this content, please contact the ARMINDA administrator

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).