
Figure 26: The dodecahedron [25] can be transformed into the truncated dodecahedron [24]
by turning each vertex into a triangle. The truncated dodecahedron can be transformed into
the rhombicosidodecahedron [23] by flattening each edge between triangles into a rectangle.

Returning to the RBK graph (Figure 21), we will notice a “ladder” that moves through-

out the graph. I hypothesize that the RBK graph began with a graph with 120 vertices

with face vectors (4, 5, 16) and (3, 4, 4, 5). This could result in a graph summarized by the

following table and seen in Figure 27.

f(v) number of vertices φ(v)
∑
φ(v)

(4, 5, 16) 96 1/80 96/80

(3, 4, 4, 5) 24 1/30 24/30

Totals: 120 2

Figure 27: A PCC graph on 120 vertices constructed from the RBK graph as a possible
graph Reti et al. started with.

The operation that Reti et al. seemed to have performed was adding two vertices and an

edge connecting them to divide a face of size 4 into two faces of size 4. This operation was

then performed multiple times, essentially cutting the rectangles into multiple rectangles.

However, as this increases the size of the faces of size 16, this operation cannot be repeated
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infinitely. Vertices with face vector (4, 5, k) have

φ(4, 5, k) = 1− 3/2 + 1/4 + 1/5 + 1/k = 1/k − 1/20

so we must have 5 ≤ k ≤ 19 for the vertex to have positive curvature. Thus the RBK

graph can have the rectangle dividing operation performed at most 3 times in all of the

rectangles adjacent to each 16-gon, which will make the 16-gon into a 19-gon. The table

below summarizes the vertices of the RBK graph after the rectangle cutting operation was

performed.

f(v) number of vertices φ(v)
∑
φ(v)

(4, 4, 19) 18 1/19 18/19

(3, 4, 4, 5) 24 1/30 4/5

(4, 5, 19) 96 1/380 24/95

Totals: 138 2

Now consider this operation on the great rhombicosidodecahedron, which has 120 ver-

tices each with face vector (4, 6, 10). We will note that for a vertex with face vector (4, 6, k),

we find

φ(4, 6, k) = 1− 3/2 + 1/4 + 1/6 + 1/k = 1/k − 1/12

so 6 ≤ k ≤ 11 for the vertex to have positive curvature. Therefore, we can perform our

rectangle splitting operation at most once in the set of rectangles adjacent to a face of size

10 on the great rhombicosidodecahedron. Figure 28 shows the operation performed. The

resulting graph has face vectors (4, 4, 11) and (4, 6, 11), and is summarized in the following

table.

f(v) number of vertices φ(v)
∑
φ(v)

(4, 4, 11) 12 1/11 12/11

(4, 6, 11) 120 1/132 120/132

Totals: 132 2

Another graph operation is motivated by a transitions that occurs in the panel of 6

graphs in Nicholson and Sneddon [14]. They are able to add 16 vertices (Figure 29) by
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Figure 28: The great rhombicosidodecahedron with 12 added vertices to form a graph with
132 vertices (because of the limited perspective of this image, only 4 of the added vertices
and 2 of the added edges are shown.

what seems to be a“thickening” of an edge that has triangles at either end that turns it

into a 4-sided face and adds 4 triangles. Figure 30 zooms in on the area of change between

the 192 vertex graph and the 208 vertex graph. Each such operation adds 4 vertices and is

performed 4 times to get from the 192 vertex graph to the 208 vertex graph.

Performing this operation takes the graph from one with 72 vertices of (3, 11, 11), 24

vertices of (3, 3, 4, 11) and 96 vertices of (3, 11, 12) to a graph with 8 vertices of (3, 3, 3, 13),

64 vertices of (3, 11, 11), 40 vertices of (3, 3, 4, 11) and 96 vertices of (3, 11, 13). To gain a

better understanding of how the graph is changed by this operation, Figure 31 shows the

same two graphs with 192 vertices and 208 vertices but this time, every face of size greater

than 4 is labeled with its size. This allows us to see that the operation of “thickening” an

edge and adding 4 triangles always occurs on an edge between two faces of size 11 but with

the triangle ends towards a face of size 12. We will note that a face of size 12 becomes a

face of size 13 when the operation is performed, as one of the additional triangles adds an

extra vertex in the cycle that makes up the boundary of the 12-gon.

The next question would be: what makes the operation stop? Why can we not repeat

this operation indefinitely? First we will note that this “thickening” operation cannot be

performed on the edge of the new 4-gon as this would result in a vertex of face vector

(3, 3, 3, 4, 4). Such a face vector has combinatorial curvature

φ(3, 3, 3, 4, 4) = 1− 5/2 + 1/3 + 1/3 + 1/3 + 1/4 + 1/4 = 0,
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Figure 29: The PCC graphs on 192 (left) and 208 (right) vertices presented in [14].

Figure 30: The operation performed between the PCC graphs of 192 vertices and 208
vertices [14].

so the graph would no longer be a PCC graph. Second, we will note that for a vertex with

face vector (3, 11, k), the combinatorial curvature is

φ(3, 11, k) = 1− 3/2 + 1/3 + 1/11 + 1/k = 1/k − 5/66.

For 1/k − 5/66 to be positive, we must k ≤ 13. We also find that there can be no vertices

with face vector (3, 12, k), since

φ(3, 12, k) = 1− 3/2 + 1/3 + 1/12 + 1/k = 1/k − 1/12.

These two limits begin limiting how large the faces adjacent to certain vertices can be.

Finally, this operation always creates a vertex of (3, 3, 4, k) where k is the size of the face

adjacent to the original edge that was “thickened.” The curvature of this vertex is

φ(3, 3, 4, k) = 1− 4/2 + 1/3 + 1/3 + 1/4 + 1/k = 1/k − 1/12,

so k ≤ 11.

With all of these considerations, if we were to try to find another edge in the graph

that can be “thickened,” the edge cannot be around one of the faces of size 13 nor can it
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Figure 31: The PCC graphs on 192 (left) and 208 (right) vertices presented in [14] but with
numbers imposed on the faces to show their sizes.

be such that the triangle ends of the “thickened” edge are in the cycle of the 13-gon. With

these conditions, there are no edges in the graph with triangles at the ends that can be

“thickened” in this manner, so the operation must stop.

Just as the rectangle cutting operation was applied to the great rhombicosidodecahe-

dron, we can apply the edge thickening operation to the truncated dodecahedron. The trun-

cated dodecahedron is a good candidate for this graph because it has vertices of (3, 10, 10)

so every edge is a potential candidate for this operation. The graph shown in Figure 32 has

the operation performed 5 times, adding 20 vertices and resulting in a graph on 80 vertices.

Each face of size greater than 4, including the outside face, is labeled with its size. The

table below show the different types of vertices that appear in the graph, along with their

combinatorial curvature.

f(v) number of vertices φ(v)
∑

φ(v)

(3, 3, 3, 11) 10 1/11 10/11

(3, 10, 11) 20 4/165 80/165

(3, 11, 11) 30 1/66 30/66

(3, 3, 4, 11) 20 1/132 20/132

Totals: 80 2
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Figure 32: Construction of a graph with 80 vertices from the truncated dodecahedron on
60 vertices using the edge thickening operation.

4 Conclusion

The open problem regarding the largest connected PCC graph remains unanswered, and

the bounds on the largest PCC graph are still relatively wide. The largest known PCC

graph has 208 vertices but the smallest upper bound on the number of vertices is 580. This

leaves a lot of space to either lower the upper bound or construct large PCC graphs.

In this paper, we considered this problem within the context of topological graph theory

and graph embeddings. We attempted to contribute to the problem by considering what

operations can be applied to PCC graphs that maintain the everywhere positive combinao-

torial curvature but increase the number of vertices in the graph. Such operations may be

very helpful in the construction of large PCC graphs, as they allow us make larger PCC

graphs from known graphs.

Future work on this topic could focus on identifying additional PCC preserving op-

erations, especially focusing on when such operations can be applied to graphs, so as to

increase the lower bound on the size of the largest PCC graph. There also still remains

the question of whether the upper bound on the size of PCC graphs can be improved. An-

other interesting topic might be to consider graphs of everywhere negative combinatorial
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curvature. What surfaces would these graphs embed on and what is the largest such graph?

Higuchi [10] showed in 2001 that negative combinatorial curvature is bounded above by

-1/1806, unlike positive combinatorial curvature which is not bounded below. However, is

there a graph with combinatorial curvature that is everywhere -1/1806? These, and other

questions, remain open regarding combinatorial curvature of graphs.
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