Algorithm Implementation and Analysis for the
Great Explorations Matcher and Scheduler

Christopher James Pyles

An advanced project report submitted in partial fulfillment of the
requirements for graduation with Honors in Computer Science.

Whitman College
2020



Certificate of Approval

This is to certify that the accompanying advanced project report by
Christopher James Pyles has been accepted in partial fulfillment of the
requirements for graduation with Honors in Computer Science.

John Stratton

Whitman College
May 21, 2020

ii



Abstract

Our Capstone group’s clients are tasked every other year with curating
matches by hand that lead to high student satisfaction with their work-
shop event. As this workshop event has expanded from 50 attendees in
1984 to over 400 in 2019, the need for a more efficient approach has be-
come necessary. I took the lead role in my Capstone group in designing
an algorithm that could match attendees with workshops to maximize
satisfaction and efficiency. This paper outlines the problem in detail, the
difficulty of such a problem, the approach taken to solving it, as well as
some areas where the algorithm could be improved.

The source code for this project can be found at https://github.
com/WhitmanCSCapstone/ge-scheduling

1 Introduction

Every other year, Whitman College hosts the Great Explorations workshop
event; an opportunity for middle school girls interested in STEM subjects to
attend workshops and become inspired. Each time this event takes place, over
400 girls must be organized into 30 different workshops at 3 different timeslots.
Additionally, each student attendee lists their top 6 most preferred workshops
when registering for the event. In previous years, it was the responsibility of
Carol Morgan and Ruth Ladderud to choose which girls were assigned to which
workshops by hand. The goal of my Capstone project’s group was to automate
this process, creating an efficient al gorithm to match girls with workshops and
time slots, working within the constraints laid out by Ruth and Carol.

2 The Problem

Due to the nature of the problem of matching students, workshops, and time
slots, we hypothesize that this problem is NP-complete. While I have been
unable to formulate a proof for its NP-completeness, it shares enough similarities
with other NP-complete problems such as 3D matching and set cover that I can
confidently make the conjecture t hat this problem is NP-Complete.

It is worth noting that the version of this problem we are working on is
further constrained. Specifically, workshops must also be filled to a minimum
capacity, and each workshop has an equal number of open slots for each time.
However, I do not believe this makes the problem no longer one that is NP-
complete. This is because several other NP-complete problems, namely vertex
cover and independent set, are still NP-complete when put under similar degree
constraints.

For these reasons, I chose to design the algorithm as if I were solving an
NP-complete problem. It is designed to be flexible oninput, and can b e used
to solve the most general form of the problem at hand, which we know to be
NP-complete.


https://github.com/WhitmanCSCapstone/ge-scheduling
https://github.com/WhitmanCSCapstone/ge-scheduling

3 The Algorithm

Listing 1: The pseudocode of the Algorithm

For each student:
For each preferred workshop:
Increase the workshop’s popularity score by 1

Sort the workshops from least to most popular

For each workshop:
For each preference rank, starting with the highest:
For each student:

If the student’s preference at the current rank is the same

as the workshop, and the student is eligible to be assigned

that workshop:
Assign the student to the least full workshop session
possible
Check to see if the workshop reached minimum capacity. If
it has, break and move on to the next workshop

If all preferences have been examined and the workshop has not yet
reached minimum capacity, do the following:
While the workshop has not reached minimum capacity:
Choose a random student not chosen before for this workshop,
and not given a filler workshop previously. If the student is
eligible to be assigned to the workshop:
Assign the student to the least full workshop session
possible as a filler workshop
Assign the student to their most preferred workshop
possible
Check to see if the workshop reached minimum capacity. If
it has, break and move on to the next workshop

Once all workshops have reached minimum capacity, do the following:

For each student:
If the student has any empty time slots:
For each preference rank, starting with the highest:
If the student can be assigned to the workshop of the
preference rank, assign the student to it.
While the student still has empty time slots:
Assign the student to a random eligible workshop

The algorithm that handles the matching and scheduling is a greedy algorithm. In
other words, it is one that matches students to workshops and time slots as it runs,
and commits to those matches rather than changing or reverting them later. The
purpose of using a greedy algorithm is to come up with a final set of matches that
we can consider "good" in an efficient amount of time. While it may not produce the
best possible matches, doing so would be unrealistic in a reasonable amount of time.



The algorithm works by splitting the data into three major classes: one for stu-
dents, one for workshops, and one for individual workshop sessions. There is also
one matcher object responsible for the decision making of placing the students into
workshop sessions.

The algorithm begins by determining a "popularity" score for each workshop.
This is done by simply finding the total number of students who listed that workshop
anywhere within their top 6 preferences. The workshops are then ordered from least to
most popular, so that the least popular workshops will be filled first. This is to ensure
that every workshop can reach a minimum threshold determined by a user-given input.

Once the workshops are sorted, the matcher goes about filling the workshops,
starting with the students who prefer them the most. Beginning at the least popular
workshop, the matcher searches the first preference of each student. If it matches
the workshop being checked, and that student shares an available time slot with the
workshop, then the student is assigned to that workshop. Additionally, the student
is assigned to the least full workshop session possible, so that the sessions are filled
with relatively even distribution. Once every students’ first preference is checked,
the matcher repeats the process with the second, third, and all subsequent preference
rankings, either until the workshop reaches its minimum capacity, or until all student
preferences are exhausted.

If all student preferences are exhausted, and the workshop still has yet to reach its
minimum capacity, then the algorithm enters a second phase of matching students to
workshops. Out of all students with two or more available open time slots remaining,
one student is chosen at random. If possible, they are assigned the workshop, and then
compensated by also being assigned the highest possible workshop on their preference
list. If a student is assigned a workshop not on their preference list in this way,
then it is recorded within that student object’s fields such that the student cannot be
randomly chosen to be given an unpreferred workshop again. This is repeated until
the workshop reaches its minimum capacity.

The processes illustrated above are repeated for each workshop, moving up the
lists of workshops from least to most popular. Once this process is completed, each
workshop will be filled to its minimum capacity. However, not every student is nec-
essarily assigned a workshop for every timeslot. The algorithm finally resolves this
by choosing said students in a random order, and assigning them their most preferred
eligible workshop. If no such workshop exists on their preference list, they are assigned
one at random.

4 Runtime Complexity

The input to this algorithm is a set of student preferences of size N, and a list of
workshops of length M. The runtime complexity of the various part of the algorithm
are as follows:

The process of finding the popularity scores of each workshop and then sorting
them by popularity is O(N + M Log(M)).

The process of filling each workshop with students who list them as preferences
takes O(N * M) time.

The process of filling each workshop to its minimum capacity with students who
do NOT list them as preferences takes O(N * M) time.

Finally, giving each unassigned student their highest remaining preferred workshop
takes O(N) time.



Altogether, the runtime of the algorithm can be simplified to the sum of these four
runtime complexities. The most complex of these is filling the workshops with both
students who prefer them and students who don’t prefer them. Using this, we can
simplify the overall complexity of the algorithm to be O(N * M). Since the algorithm
works on the most general form of the problem, and that form of the problem is NP-
complete, a polynomial runtime of O(N % M) is considerably good. The real-time
runtime of this algorithm is just under 30 seconds, which is much better than the tens
of hours that this process took when it was done by hand.

5 Quality of Results

After running the algorithm, the metadata of the results is outputted to a separate
sheet. By reviewing these results for our test set, it’s worth noting that unpreferred
assignments were kept to a minimum, almost entirely contained within the workshops
with popularity scores too low to be filled by students who preferred them.

Furthermore, every student in the test set was assigned at least two of their pre-
ferred workshops out of a total three. In fact, the vast majority of students had all
three of their assigned workshops ones that they listed as preferences.

It is worth noting, however, that the algorithm’s design does not guarantee this
to be the case. It is possible for a student to be assigned only one of their top
six preferences. This could happen if they are randomly selected to be given an
unpreferred workshop to fill it to minimum capacity. Later, that same student could be
given an unpreferred workshop during the final matching phase. However, this is only
possible if all of the students eligible preferences are already filled, and that student
was never placed in those workshops during early matching. For this to be the case,
all six of the student’s preferences would necessarily be high-popularity workshops,
and a considerable number of other students would need to have similar or identical
preference lists.

Unless all the above conditions are met, the student would necessarily be assigned
a more preferred workshop during the earliest matching phase. Furthermore, given
an input with such a student, there necessarily exist a nontrivial number of students
with similar preferences. Therefore it would most likely require by-hand matching
or an exponential-time algorithm to guarantee that no student would be given two
unpreferred workshops, or to prove that such a matching could not exist.

I am also inclined to believe that this scenario, while possible, is unrealistic given
the distribution of preferences we saw in our test dataset. Even workshops with popu-
larity scores many times higher than their capacities did not cause any of the aforemen-
tioned problems. Furthermore, even students with preference lists consisting of mostly
high-popularity workshops still received a minimum of two preferred workshops. Since
the algorithm fills the most popular workshops last, the pool of students eligible to be
assigned those workshops is greatly reduced by the time they are addressed.

6 Future Improvements

Despite the above analysis showing that the algorithm’s outputs are reliably satisfac-
tory, there is still room for improvement. For example, the algorithm does not guaran-
tee that the final phase of matching will be able to assign students to their preferences.
This could be improved by making minimal adjustments to previous scheduling or



matches to allow a greater number of preferred workshops to be assigned. This could
be accomplished either by rearranging a student’s schedule, changing several students’
assignments entirely, or a combination of both.

Additionally, there is a lot of room for improvement in how the algorithm handles
scheduling. While the current system prioritizes putting students in the least full
workshop sessions, it does not force or guarantee it. It is noticeable in the metadata
output that there is not a very even distribution of students in the different sections
of some workshops. This could be resolved by putting tighter restrictions on session
filling. For example, each session could have its own minimum threshold that must
be met, not just each workshop as a whole. Another possible solution would be to
prioritize assigning students to workshops only when they can be assigned to the least
full session, instead of simply when they can be assigned to any session. Treating the
scheduling with higher priority would be an appropriate extension of this project.

7 Conclusion

Overall, the algorithm performs well, and effectively accomplishes the original goal of
matching and scheduling students with workshops and time slots. For a problem that
we hypothesize is NP-complete, the polynomial runtime is good, and the real-time
runtime is exceptional compared to scheduling by hand.

As mentioned above, of course, there are several improvements to the algorithm
that could be made. While we were unable to address these during this academic
year due to time constraints, I hope that this algorithm can be improved upon in the
future. While some of these changes would slightly increase the algorithm’s runtime
complexity, the algorithm runs quickly enough that it can be afforded to slow down
the matching process to produce better results.

8 Acknowledgements

I thank John Stratton for the assistance in forming the conjecture of NP-completeness,
as well as for his supervision of the entire project’s development.

I thank Carol Morgan and Ruth Ladderud for the opportunity to tackle this dif-
ficult but engaging problem. I enjoyed having the chance to create a challenging
algorithm that would benefit people in future years of this workshop event.

Finally, I thank my team - Ian Hawkins, Trung Vu, and Isaiah Standard - for as-
sistance in producing the algorithm, as well as help producing the code that formatted
the input and output of the system and its metadata.



	Introduction
	The Problem
	The Algorithm
	Runtime Complexity
	Quality of Results
	Future Improvements
	Conclusion
	Acknowledgements

